Can Cancer Immunotherapy be both Personalized and Off-the-Shelf?

William V. Williams, M.D.

President and CEO, BriaCell Therapeutics Corporation
Cancer Immunotherapy

The Problems

- **Checkpoint Inhibitors:**
 - Anti-PD-1 Abs, anti-PD-L1 Abs, anti-CTLA-4 and others reduce the tumor’s ability to suppress immune system.
 - They only work in 20%-30% of patients and can cause autoimmune disease.
 - Response appears to correlate with tumor mutational burden.
 - In breast cancer, only triple negative disease tends to have a high mutational burden

- **Therapeutic Cancer Vaccines:**
 - Have not been successful in solid tumors or blood cancers except those specific to the patient.

- **Personalized Immunotherapies:**
 - Provenge® is effective for prostate cancer and uses a prostate-specific antigen coupled to GM-CSF to pulse dendritic cells.
 - This indicates that immune responses to a tissue-specific antigen can be an effective immunotherapy.
 - This further suggests that a Class II HLA restricted CD4+ Helper T cell response may be key in effectiveness of the immunotherapy.
Therapeutic Cancer Vaccines

Varieties of Targeted Immunotherapies/Therapeutic Cancer Vaccines

- **Peptide and protein tumor antigens:**
 - **Advantages:** Easy to manufacture and administer; can elicit helper T cell (T_H) responses; may elicit antibody (Ab) and cytotoxic T cell (CTL) responses.
 - **Disadvantages:** Limited antigenic repertoire elicited; difficult to break tolerance against some antigens; have had multiple clinical failures.

- **Peptide Neoantigens:**
 - **Advantages:** Induce an immune response specific to the patient’s cancer; can induce T_H and CTL responses, may induce Ab responses.
 - **Disadvantages:** Need to determine neoantigen sequences in each specific patient and may need to manufacture peptides specific to each patient.

- **Whole-Cell Approaches:**
 - **Advantages:** May display a wide variety of tumor-associated antigens; can induce T_H, CTL and Ab responses.
 - **Disadvantages:** HLA-restriction of immune responses may hinder cross-reactivity of elicited T cell response to the tumor; also multiple clinical failures.
Development of SV-BR-1

SV-BR-1 – First developed by Dr. Charles Wiseman at Saint Vincent’s Medical Center (Los Angeles)

Derived from a chest wall metastasis from a patient with metastatic breast cancer (MBC)

Grows as an adherent cell in simple tissue culture media – Her2 strong+, ER/PR-

Initially used to immunize 14 patients with advanced breast cancer in a regimen including:

- Pre-dose low-dose cyclophosphamide (300 mg/m²) 2-3 days prior to inoculation
- Intradermal inoculation of ~20 million irradiated SV-BR-1 cells (split into 4 sites)
- Follow-up parenteral injections of GM-CSF locally on the day of SV-BR-1 inoculation and then daily x 8 days
- Cycles every 2 weeks x 3 and then monthly

Generally safe and well tolerated, median Overall Survival = 12.1 months
Development of SV-BR-1-GM

- SV-BR-1 transfected with the CSF2 gene (encoding GM-CSF) to produce SV-BR-1-GM
- Used to immunize 4 patients with advanced cancer in a regimen including:
 - Pre-dose low-dose cyclophosphamide (300 mg/m²) 2-3 days prior to inoculation
 - Intradermal inoculation of ~20 million irradiated SV-BR-1 cells (split into 4 sites)
 - Follow-up injections of interferon-α2b (Intron A) 10,000 IU per inoculation site ~2&4 days later
 - Cycles every 2 weeks x 3 and then monthly
- Well tolerated, no life-threatening drug related adverse events
- One patient with transient urticaria reported as grade 3, responded to antihistamines
- Median Overall Survival = 35 months
- One robust responder with >90% regression during treatment, subsequent relapse (upon halting treatment) responded to re-treatment
- She matched SV-BR-1-GM at the HLA-DRB3 locus
SV-BR-1-GM Expresses Multiple Breast/Cancer related Antigens

- SV-BR-1-GM expresses dozens of breast tissue and breast cancer antigens (by RNA-seq)
- This enhances the chance for a broad immune response against multiple breast tissue and breast cancer-related antigens
- There is evidence for immune responses against some of these antigens in patients treated with the SV-BR-1-GM regimen
SV-BR-1-GM Mechanism of Action

SV-BR-1-GM Acts as an Antigen-Presenting Cell

- SV-BR-1-GM cells were cultured and serum-starved for 24 h then coincubated with yellow fever virus (YFV) Envelope (Env) 43–59 peptides known to bind to HLA-DR complexes with an HLA-DRB3*01:01-based β chain and a YFV-DRB3*01:01-specific CD4+ T cell clone.
- After 72 h of coculturing, T cell activation was assessed by determining the levels of secreted interferon (IFN)-γ. Values shown are arithmetic means from technical triplicates ± SDs, normalized to the mean IFN-γ level obtained from the YFV peptide-treated non-DRB3 PBMC reference wells.
- Background IFN-γ levels obtained from T cells treated with peptides in the absence of APCs (SV-BR-1-GM or PBMCs) were subtracted.
- Note that SV-BR-1-GM is as potent as DRB3*01:01 peripheral blood mononuclear cells.
4. SV-BR-1-GM directly stimulates cancer fighting CD4+ and CD8+ T cells (further boosts the response)

5. SV-BR-1-GM efficacy depends on HLA matching of SV-BR-1-GM and the patient

1. SV-BR-1-GM produces breast cancer antigens (proteins made by breast cancer cells)

2. SV-BR-1-GM secretes GM-CSF which further promotes dendritic cell-based antigen presentation (boosts the response)

3. Breast cancer antigens are taken up by dendritic cells and “presented” to CD4+ and CD8+ T cells implicated in tumor destruction.
SV-BR-1-GM Phase IIa Monotherapy Trial Design

Study Completed:
- 30 Metastatic Breast Cancer patients screened and 23 dosed
- **Primary objectives:** Safety & tumor response
- Exploratory objectives include immune response to tumor, biomarkers, Quality of Life
- Pre-dose low dose cyclophosphamide to reduce immune suppression
- Post-dose IFN-α2b to boost cell mediated immunity
The patients are heavily pre-treated and generally similar regardless of HLA matching with SV-BR-1-GM.
Conclusion: In spite of being very heavily pre-treated (median of 4 prior chemotherapy /biological therapy regimens), patients were able to remain on the SV-BR-1-GM regimen for protracted periods of time.
SV-BR-1-GM
Study WRI-GEV-007 – Monotherapy Safety Data

Conclusion: SV-BR-1-GM was generally safe and well tolerated

Adverse Events seen in 2 or More Patients

<table>
<thead>
<tr>
<th>AE Term</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythema</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flu Like Symptoms</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection Site Reaction</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased Peritoneal Fluid</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory Neuropathy</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induration</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urticaria</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Serious Adverse Events

<table>
<thead>
<tr>
<th>Body System</th>
<th>AE Term</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td>Respiratory Failure</td>
<td>Grade 4</td>
</tr>
<tr>
<td>Cardiac</td>
<td>Restrictive Cardiomyopathy</td>
<td>Grade 5</td>
</tr>
<tr>
<td>Nervous System</td>
<td>Dizziness</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Pleural Effusion</td>
<td>Grade 4</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Dehydration</td>
<td>Grade 3</td>
</tr>
</tbody>
</table>

- None of the Serious Adverse Events were considered Related to SV-BR-1-GM
SV-BR-1-GM - Efficacy as Predicted

- SV-BR-1-GM appears to be most effective in patients who match with SV-BR-1-GM at HLA loci (types) further supporting our “HLA Matching Hypothesis”

HLA Matching and Biological Activity

<table>
<thead>
<tr>
<th>Patients (n)</th>
<th>HLA Match</th>
<th>Tumor Shrinkage</th>
<th>Biological Response*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>≥2</td>
<td>50%</td>
<td>75%</td>
</tr>
<tr>
<td>17</td>
<td>≥1</td>
<td>18%</td>
<td>35%</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

*Biological response includes tumor shrinkage or lower circulating cancer associated cells

- PD-L1 expression on circulating cancer cells & cancer-associated cells in >90% of patients → Strong rationale for combination with checkpoint inhibitors
Circulating Cancer-Associated Macrophage-Like Cells

CAMLs are giant macrophage-like cells associated with patient tumors and found in the circulation of cancer patients from a variety of cancer types. The presence of tumor markers in CAMLs suggests that CAMLs phagocytose tumor material. Reduction in CAML frequency and max. CAML size following treatment may indicate a favorable prognosis.

Reduction of CAML numbers in subjects with at least 1 HLA allele match to SV-BR-1-GM (green) compared to mismatching subjects (red). Subjects 01-002 and 05-002 experienced tumor regressions.

Conclusion: Reductions in CAMLs (a marker of tumor bulk) appear to decrease in responders and especially are seen in HLA matched patients treated with SV-BR-1-GM.
SV-BR-1-GM - Delayed Type Hypersensitivity to SV-BR-1-GM

Rationale: Delayed-type hypersensitivity (DTH) is a good marker of cellular (T cell) immune responses. Briefly, for each cycle, SV-BR-1-GM was injected intra-dermally with 5×10^6 irradiated cells in 4 sites in the upper back and thighs.

2 ±1 days later, these sites were assessed for erythema and induration. The largest average response (size) for each patient (induration and corresponding erythema), with largest induration used to determine which of the 4 inoculation sites was chosen for analysis.

Conclusion: A substantial proportion of patients with follow-up information develop DTH to SV-BR-1/SV-BR-1-GM, in spite of anergy to test antigens (Candida) in some patients. The most robust response was seen in a patient with regression of multiple pulmonary metastases (01-002).
SV-BR-1-GM Treatment Enhances Immune Responsiveness

T cell responses to PRAME (a cancer testis antigen) and HER2/neu peptides (ECD = extracellular domain; ICD = intracellular domain) in patients with and without tumor regression

Working Model - Tumor regression requires: HLA matching to SV-BR-1-GM and the ability to mount a cellular immune response (DTH and ex vivo T cell proliferation)

Conclusion: Responders with tumor regression have a higher propensity to develop T cell responses to the cancer-related antigens PRAME and HER2/neu.
Anti-SV-BR-1 Antibodies in Patients

Anti-SV-BR-1 antibody titers in patient sera. SV-BR-1 cells were incubated with 1:10 diluted patient sera then stained with fluorescently labeled anti-human IgG and analyzed by flow cytometry. **A.** Anti-SV-BR-1 antibodies in all patient’s sera samples. **B.** Data as in A. but samples segregated either as HLA matched (≥ 1 allele) or non-HLA matched. Baseline: before treatment with first dose of SV-BR-1-GM.

Conclusions: IgG responses to SV-BR-1 are elicited by SV-BR-1-GM treatment. Robust antibody responses to SV-BR-1 are seen in patients treated with SV-BR-1-GM.
SV-BR-1-GM - Efficacy Dependent on Ability to Develop DTH

- SV-BR-1-GM appears to be most effective in patients who match with SV-BR-1-GM at HLA loci and are able to develop a DTH response to SV-BR-1-GM.

HLA Matching and DTH Responses

<table>
<thead>
<tr>
<th>Patients (n)</th>
<th>No HLA Match (n=6)</th>
<th>1+ HLA Match (n=15)</th>
<th>2+ HLA Matches (n=4)</th>
<th>All Patients (n=23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DTH (n=8)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>+ DTH (n=17)</td>
<td>0%</td>
<td>33%</td>
<td>67%</td>
<td>23%</td>
</tr>
</tbody>
</table>

- Note that patients who were anergic to candida antigen at baseline were able to mount a DTH response to SV-BR-1-GM and did have evidence of clinical responses in some cases.
SV-BR-1-GM Combination Therapy
SV-BR-1-GM & Bria-OTS™
Immunotherapy Combination Considerations

- SV-BR-1-GM and Bria-OTS™ should synergize with existing approved immunotherapies as well as those still under development.

- This includes immune checkpoint inhibitors such as antibodies to PD-1, CTLA-4, GITR and CD73 and IDO inhibitors which eliminate tumor immunosuppression.

- Checkpoint Inhibitors were the subject of the 2018 Nobel Prize in Medicine.

- In addition, immunostimulatory antibodies to molecules such as OX40 should enhance responses to SV-BR-1-GM and Bria-OTS™.
CTC & CAML PD-L1 expression

- To date, 90% of patients analyzed have had PD-L1 expression on their CAMLs and CTCs
- In Patient 01-002 (monotherapy study) CTCs and CAMLs were analyzed for PD-L1 Expression.
- Mean levels increased from 97 ±7 to 437 ±72 (SEM). Representative Photos are Shown Below

Conclusion: Increases in PD-L1 expression in CAMLs are seen during therapy indicating potential synergy with PD-1/PD-L1 inhibition.
SV-BR-1-GM Phase I/IIa Combination Therapy Trial

Currently Recruiting:

- Treatment in combination with Keytruda® (Merck & Co., Inc.) for PD-L1(+) or PD-L2(+) tumors q3wks x up to 24 cycles, then SV-BR-1-GM alone q3wks
 - Imaging every 6-12 weeks
 - First 6 patients have enrolled and safety and tolerability is excellent
 - Initial efficacy data shows evidence of additive or synergistic activity

Baseline: Imaging, labs, clinical evaluation

SV-BR-1-GM 1,2,3, 4 (week 1,4, 7, 10)

Restage: Imaging, labs, clinical evaluation

SV-BR-1-GM 5,6,7,8 (weeks 13, 16, 19, 22)

Restage: Imaging, labs, clinical evaluation

SV-BR-1-GM 9,10,11,12 (weeks 25, 28, 31, 34)

Restage: Imaging, labs, clinical evaluation

SV-BR-1-GM 13,14,15,16 (weeks 37, 40, 43, 46)

Restage: Imaging, labs, clinical evaluation

SV-BR-1-GM 17,18,19,20 (weeks 49, 52, 55, 58)

Non-progressive response

Non-progressive response

Non-progressive response

Non-progressive response

Continue as long as Clinical Benefit

Off Study
Conclusion: The combination of the SV-BR-1-GM regimen with pembrolizumab has been safe. The study is ongoing.
Patient Characteristics and Best Response for the SV-BR-1-GM Regimen

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age Ethnicity</th>
<th>HLA Allele Matches</th>
<th>Her2</th>
<th>ER</th>
<th>PR</th>
<th>Prior Therapies</th>
<th>Cycles on Monotherapy Study – Best Response on Monotherapy</th>
<th>Cycles on Combo Study – Best Response on Combo</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-005</td>
<td>62 yo WF</td>
<td>0</td>
<td>2+</td>
<td>+</td>
<td>+</td>
<td>4 chemo 2 hormonal</td>
<td>5 - PD</td>
<td>3 – PD</td>
</tr>
<tr>
<td>04-007</td>
<td>66 yo WF</td>
<td>1</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>3 chemo 1 hormonal</td>
<td>3 - PD</td>
<td>2 – Hospice</td>
</tr>
<tr>
<td>04-008</td>
<td>63 yo WF</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>2 chemo 1 hormonal</td>
<td>0</td>
<td>3 – PD</td>
</tr>
<tr>
<td>05-005</td>
<td>64 yo WF</td>
<td>3</td>
<td>2+</td>
<td>0</td>
<td>0</td>
<td>4 chemo</td>
<td>3 - PD</td>
<td>2 – Hospice</td>
</tr>
<tr>
<td>06-004</td>
<td>59 yo WF</td>
<td>1</td>
<td>2+</td>
<td>+</td>
<td>+</td>
<td>3 chemo 3 targeted 3 biol. 5 hormonal</td>
<td>0</td>
<td>7 – SD</td>
</tr>
<tr>
<td>06-001</td>
<td>73 yo WF</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>8 chemo, 1 biological</td>
<td>4 - SD</td>
<td>6 – SD</td>
</tr>
</tbody>
</table>

A 17% decrease in target lesion diameters was noted for patient 06-001.

Bi-dimensional measurements of all lesions in patient 06-001 showed a 43% decrease.
Serum Biomarkers – decrease in responding subject (06-001)

<table>
<thead>
<tr>
<th></th>
<th>04-005</th>
<th>04-007</th>
<th>04-008</th>
<th>05-005</th>
<th>06-004</th>
<th>06-001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline CEA</td>
<td>11.6</td>
<td>17.7</td>
<td>2.6</td>
<td>1.3</td>
<td>0.2</td>
<td>167.8</td>
</tr>
<tr>
<td>Baseline 15-3</td>
<td>47</td>
<td>748</td>
<td>22</td>
<td>16.2</td>
<td>93.4</td>
<td>164.4</td>
</tr>
<tr>
<td>Initial Eval CEA</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1.55</td>
</tr>
<tr>
<td>Initial Eval 15-3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>114.4</td>
</tr>
</tbody>
</table>

* not available

SV-BR-1-GM Combined With KEYTRUDA®: Patient 06-001 (best responder) has continued Improvement in Cancer Markers
Robust DTH Responses Correlate with Clinical Response to SV-BR-1-GM With pembrolizumab
Brahmer 2012: treated 4 patients with breast cancer (sub-type not specified) – 0 response rate

Nanda 2016: treated 32 patients with triple negative breast cancer (TNBC) with KEYTRUDA®, data on 27, all PD-L1+
- 18.50% response rate
- Median time to response 17.9 weeks (range, 7.3 to 32.4 weeks)

Dirix 2017: treated 168 patients with avelumab (Bavencio)
- Response rate of 3%
- 5.2% response rate in Triple Negative Breast Cancer (3 of 58 patients)
- Response Rate of 1.84% in other types of breast cancer (2 of 110 patients)

Patient 06-001 was not TNBC, so the chances this was due to KEYTRUDA® is almost nil

PD-1 and PD-L1 Inhibitors are Ineffective as Monotherapy in Breast Cancer →
Responses seen to SV-BR-1-GM Combined With KEYTRUDA® unlikely due to KEYTRUDA alone
Off-The-Shelf Personalized Immunotherapy Approach
The SV-BR-1 cell line is being modified to express both GM-CSF and interferon-α PLUS patient-specific matching HLA alleles

Using 8 HLA-A alleles and 7 HLA-BDRB3/4/5 alleles in a lentiviral expression system

Cell lines will be pre-manufactured which express HLA alleles covering/matching with >99% of the overall advanced breast cancer population (double matches in ~90% of the population)
15 Unique HLA Alleles for Tailored Immunotherapies

A simple test determines the correct “off-the-shelf” immunotherapy to select

1. Saliva test reveals the patient’s Class I and Class II HLA Types.
2. The correct pre-manufactured Bria-OTS™ is selected and shipped to the clinical site for patient treatment.
Timelines, Milestones and Catalysts
Summary

SV-BR-1-GM: Breast cancer cell lines with dendritic cell characteristics

- SV-BR-1-GM expresses multiple breast cancer associated antigens, but also expresses multiple immune stimulating factors, including Class II HLA molecules
- **SV-BR-1-GM has been shown to be able to directly activate CD4+ T cells**
- SV-BR-1-GM has been in 2 phase I/IIa clinical trials in patients with late stage breast cancer
- SV-BR-1-GM induces both delayed-type hypersensitivity and antibody responses
- **Several patients have responded with marked tumor shrinkage or other evidence of anti-tumor activity**
 - For monotherapy patients, all with tumor shrinkage matched SV-BR-1-GM at least at one HLA locus
 - The ability to develop DTH also appears to correlate with clinical responses
 - Circulating tumor cells or cancer-associated cells express PD-L1 in >90% of patients analyzed to date
- **Combination study with KEYTRUDA® shows evidence of additive or synergistic activity**
- Under development – a series of cell lines derived from the SV-BR-1-GM parent cell line that will express multiple HLA types to match >99% of the breast cancer population
Additional Clinical Data
SV-BR-1-GM Responders: *Patient 01-002*

- Patient 01-002 is a 73-year-old woman with breast cancer diagnosed in 1995. She developed liver metastases in 2010, and lung metastases in 2017.
- Previously treatment included 7 rounds of chemotherapy with 8 different chemotherapy agents.
- She received 5 cycles of SV-BR-1-GM over 3 months, then monthly cycles (6 months total).
- Evaluated after 3 months and 6 months showed a clear response in the multiple bilateral pulmonary nodules”.
- Cancer-associated macrophage-like cells (CAMLs) also decreased
- The response was maintained after 6 months of SV-BR-1-GM treatment.
- The liver tumors were stable to slightly increased at 3 months, and then progressed after 6 months.
- She matched SV-BR-1-GM at 2 HLA types
- This supports our hypothesis of heightened anti-tumor activity in patients with a matched HLA types.
Patient 02-004 is a 74-year-old woman with breast cancer diagnosed in 2014. Her breast cancer spread to the skin and was of the inflammatory type.

- Previously treatment included 3 rounds of chemotherapy with 10 different chemotherapy or biological agents.
- She received 2 cycles of SV-BR-1-GM and developed worsening breast inflammation.
- She discontinued the study due to the worsening inflammation and was lost to follow-up.
- She was noted to have a marked reduction in circulating cancer-associated cells.
- She matched SV-BR-1-GM at 2 HLA types.
Patient 01-005 was a 54-year-old woman with breast cancer diagnosed in 2014. Her breast cancer spread to the skin and involved ~80% of the breast.

Previously treatment included 3 rounds of chemotherapy with 5 different chemotherapy or biological agents.

She received 2 cycles of SV-BR-1-GM and had a marked improvement in the breast with reduction to ~30% involvement after the first treatment.

She developed restrictive cardiomyopathy and died (judged unrelated)

She matched SV-BR-1-GM at the HLA-A type
SV-BR-1-GM Responders: Patient 05-002

- Patient 05-002 is a 59-year-old woman with breast cancer diagnosed in 2011. Her breast cancer spread to the bone and the liver.

- Previously treatment included 3 rounds of chemotherapy with 5 different chemotherapy agents, radiation and hormone therapy.

- She received 5 cycles of SV-BR-1-GM over 3 months and had a marked improvement in the breast tumor with 26% reduction in the size of the tumor.

- Her bone tumor was stable but the liver increased.

- She matched SV-BR-1-GM at the HLA-DRβ3 type and was a partial match at the HLA-B type.
Thank You!

BriaCell
The Future of Cancer Immunotherapy

info@BriaCell.com BriaCell.com 1-888-485-6340